miércoles, 12 de mayo de 2010
martes, 27 de abril de 2010
PROTEINAS
PROTEINAS
Las proteínas son macromoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρώτα ("prota"), que significa "lo primero" o del dios Proteo, por la cantidad de formas que pueden tomar.
Las proteínas desempeñan un papel fundamental en los seres vivos y son las biomoléculas más versátiles y más diversas. Realizan una enorme cantidad de funciones diferentes, entre las que destacan:
Estructural (colágeno y queratina)
Reguladora (insulina y hormona del crecimiento),
Transportadora (hemoglobina),
Defensiva (anticuerpos),
enzimática (sacarasa y pepsina),
Contráctil (actina y miosina).
Las proteínas de todo ser vivo están determinadas mayoritariamente por su genética (con excepción de algunos péptidos antimicrobianos de síntesis no ribosomal), es decir, la información genética determina en gran medida qué proteínas tiene una célula, un tejido y un organismo.
Las proteínas se sintetizan dependiendo de cómo se encuentren regulados los genes que las codifican. Por lo tanto, son suceptibles a señales o factores externos. El conjunto de las proteínas expresadas en una circunstancia determinada es denominado proteoma.
Características:
Los prótidos o proteínas son biopolímeros, es decir, están constituidas por gran número de unidades estructurales simples repetitivas (monómeros). Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las diferencian de las disoluciones de moléculas más pequeñas.
Por hidrólisis, las moléculas de proteína se escinden en numerosos compuestos relativamente simples, de masa pequeña, que son las unidades fundamentales constituyentes de la macromolécula. Estas unidades son los aminoácidos, de los cuales existen veinte especies diferentes y que se unen entre sí mediante enlaces peptídicos. Cientos y miles de estos aminoácidos pueden participar en la formación de la gran molécula polimérica de una proteína.
Todas las proteínas tienen carbono, hidrógeno, oxígeno y nitrógeno y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, por término medio, 16% de la masa total de la molécula; es decir, cada 6,25 g de proteína contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad de proteína existente en una muestra a partir de la medición de N de la misma.
La síntesis proteica es un proceso complejo cumplido por las células según las directrices de la información suministrada por los genes.
Las proteínas son largas cadenas de aminoácidos unidas por enlaces peptídicos entre el grupo carboxilo (-COOH) y el grupo amino (-NH2) de residuos de aminoácido adyacentes. La secuencia de aminoácidos en una proteína está codificada en su gen (una porción de ADN) mediante el código genético. Aunque este código genético especifica los 20 aminoácidos "estándar" más la selenocisteína y —en ciertos Archaea— la pirrolisina, los residuos en una proteína sufren a veces modificaciones químicas en la modificación postraduccional: antes de que la proteína sea funcional en la célula, o como parte de mecanismos de control. Las proteínas también pueden trabajar juntas para cumplir una función particular, a menudo asociándose para formar complejos proteicos estables.
Funciones:
Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan. Son proteínas:
Casi todas las enzimas, catalizadores de reacciones químicas en organismos vivientes;
Muchas hormonas, reguladores de actividades celulares;
La hemoglobina y otras moléculas con funciones de transporte en la sangre;
Los anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes extraños;
Los receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada;
La actina y la miosina, responsables finales del acortamiento del músculo durante la contracción;
El colágeno, integrante de fibras altamente resistentes en tejidos de sostén.
Estructura:
Es la manera como se organiza una proteína para adquirir cierta forma. Presentan una disposición característica en condiciones fisiológicas, pero si se cambian estas condiciones como temperatura, pH, etc. pierde la conformación y su función, proceso denominado desnaturalización. La función depende de la conformación y ésta viene determinada por la secuencia de aminoácidos.
Para el estudio de la estructura es frecuente considerar una división en cuatro niveles de organización, aunque el cuarto no siempre está presente.
Conformaciones o niveles estructurales de la disposición tridimensional:
Estructura primaria.
Estructura secundaria.
Nivel de dominio.
Estructura terciaria.
Estructura cuaternaria.
A partir del nivel de dominio sólo las hay globulares.
Propiedades de las proteínas:
Solubilidad: Se mantiene siempre y cuando los enlaces fuertes y débiles estén presentes. Si se aumenta la temperatura y el pH, se pierde la solubilidad.
Capacidad electrolítica: Se determina a través de la electroforesis, técnica analítica en la cual si las proteínas se trasladan al polo positivo es porque su molécula tiene carga negativa y viceversa.
Especificidad: Cada proteína tiene una función específica que está determinada por su estructura primaria.
Amortiguador de pH (conocido como efecto tampón): Actúan como amortiguadores de pH debido a su carácter anfótero, es decir, pueden comportarse como ácidos (aceptando electrones) o como bases (donando electrones).
Desnaturalización:
Si en una disolución de proteínas se producen cambios de pH, alteraciones en la concentración, agitación molecular o variaciones bruscas de temperatura, la solubilidad de las proteínas puede verse reducida hasta el punto de producirse su precipitación. Esto se debe a que los enlaces que mantienen la conformación globular se rompen y la proteína adopta la conformación filamentosa. De este modo, la capa de moléculas de agua no recubre completamente a las moléculas proteicas, las cuales tienden a unirse entre sí dando lugar a grandes partículas que precipitan. Además, sus propiedades biocatalizadores desaparecen al alterarse el centro activo. Las proteínas que se hallan en ese estado no pueden llevar a cabo la actividad para la que fueron diseñadas, en resumen, no son funcionales.
Esta variación de la conformación se denomina desnaturalización. La desnaturalización no afecta a los enlaces peptídicos: al volver a las condiciones normales, puede darse el caso de que la proteína recupere la conformación primitiva, lo que se denomina renaturalización.
Ejemplos de desnaturalización son la leche cortada como consecuencia de la desnaturalización de la caseína, la precipitación de la clara de huevo al desnaturalizarse la ovoalbúmina por efecto del calor o la fijación de un peinado del cabello por efecto de calor sobre las queratinas del pelo.
Determinación de la estabilidad proteica :
La estabilidad de una proteína es una medida de la energía que diferencia al estado nativo de otros estados "no nativos" o desnaturalizados. Hablaremos de estabilidad termodinámica cuando podamos hacer la diferencia de energía entre el estado nativo y el desnaturalizado, para lo cual se requiere reversibilidad en el proceso de desnaturalización. Y hablaremos de estabilidad cinética cuando, dado que la proteína desnaturaliza irreversiblemente, sólo podemos diferenciar energéticamente la proteína nativa del estado de transición (el estado limitante en el proceso de desnaturalización) que da lugar al estado final. En el caso de las proteínas reversibles, también se puede hablar de estabilidad cinética, puesto que el proceso de desnaturalización también presenta un estado limitante. Actualmente se ha demostrado que algunas proteínas reversibles pueden carecer de dicho estado limitante, si bien es un tema aún controvertido en la bibliografía científica.
La determinación de la estabilidad proteica puede realizarse con diversas técnicas. La única de ellas que mide directamente los parámetros energéticos es la calorimetría (normalmente en la modalidad de calorimetría diferencial de barrido). En esta se mide la cantidad de calor que absorbe una disolución de proteína cuando es calentada, de modo que al aumentar la temperatura se produce una transición entre el estado nativo y el estado desnaturalizado que lleva asociada la absorción de una gran cantidad de calor.
El resto de técnicas miden propiedades de las proteínas que son distintas en el estado nativo y en el estado desplegado. Entre ellas se podrían citar la fluorescencia de triptófanos y tirosinas, el dicroísmo circular, radio hidrodinámico, espectroscopia infrarroja, resonancia magnética nuclear, etc. Una vez hemos elegido la propiedad que vamos a medir para seguir la desnaturalización de la proteína, podemos distinguir dos modalidades: Aquellas que usan como agente desnaturalizante el incremento de temperatura y aquellas que hacen uso de agentes químicos (como urea, cloruro de guanidinio, tiocianato de guanidinio, alcoholes, etc.). Estas últimas relacionan la concentración del agente utilizado con la energía necesaria para la desnaturalización. Una de las últimas técnicas que han emergido en el estudio de las proteínas es la microscopía de fuerza atómica. Esta técnica es cualitativamente distinta de las demás, puesto que no trabaja con sistemas macroscópicos sino con moléculas individuales. Mide la estabilidad de la proteína a través del trabajo necesario para desnaturalizarla cuando se aplica una fuerza por un extremo mientras se mantiene el otro extremo fijo a una superficie.
La importancia del estudio de la estabilidad proteica está en sus implicaciones biomédicas y biotecnológicas. Así, enfermedades como el Alzheimer o el Parkinson están relacionadas con la formación de amiloides (polímeros de proteínas desnaturalizadas). El tratamiento eficaz de estas enfermedades podría encontrarse en el desarrollo de fármacos que desestabilizaran las formas amiloidogénicas o bien que estabilizaran las formas nativas. Por otro lado, cada vez más proteínas van siendo utilizadas como fármacos. Resulta obvio que los fármacos deben presentar una estabilidad que les dé un alto tiempo de vida cuando están almacenados y un tiempo de vida limitado cuando están realizando su acción en el cuerpo humano.
En cuanto a la importancia en las aplicaciones biotecnológicas radica en que pese a su extrema eficacia catalítica su baja estabilidad dificulta su uso (muchas proteínas de potencial interés apenas mantienen su configuración nativa y funcional por unas horas).
Clasificación:
Según su forma:
Fibrosas: presentan cadenas polipeptídicas largas y una estructura secundaria atípica. Son insolubles en agua y en disoluciones acuosas. Algunos ejemplos de éstas son queratina, colágeno y fibrina.
Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteína y grupos hidrófilos hacia afuera, lo que hace que sean solubles en disolventes polares como el agua. La mayoría de las enzimas, anticuerpos, algunas hormonas y proteínas de transporte, son ejemplos de proteínas globulares.
Mixtas: posee una parte fibrilar (comúnmente en el centro de la proteína) y otra parte globular (en los extremos).
Según su composición química
Simples: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (globulares y fibrosas).
Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas llamadas grupo prostético.
Fuentes de proteínas:
Las fuentes dietéticas de proteínas incluyen carne, huevos, soja, granos, legumbres y productos lácteos tales como queso o yogurt. Las fuentes animales de proteínas poseen los 20 aminoácidos. Las fuentes vegetales son deficientes en aminoácidos y se dice que sus proteínas son incompletas. Por ejemplo, la mayoría de las legumbres típicamente carecen de cuatro aminoácidos incluyendo el aminoácido esencial metionina, mientras los granos carecen de dos, tres o cuatro aminoácidos incluyendo el aminoácido esencial lisina. Sin embargo, para aquellas personas que tienen una dieta vegetariana, existe la opción de complementar la ingesta de proteínas de productos vegetales con diferentes tipos de aminoácidos para contrarrestar la falta de algún aminoácido componente.
Calidad proteica:
Las diferentes proteínas tienen diferentes niveles de familia biológica para el cuerpo humano. Muchos alimentos han sido introducidos para medir la tasa de utilización y retención de proteínas en humanos. Éstos incluyen valor biológico, NPU (Net Protein Utilization) y PDCAAS (Protein Digestibility Corrected Amino Acids Score), la cual fue desarrollado por la FDA mejorando el PER (Protein Efficiency Ratio). Estos métodos examinan qué proteínas son más eficientemente usadas por el organismo. En general, éstos concluyeron que las proteínas animales que contienen todos los aminoácidos esenciales (leche, huevos, carne) y la proteína de soya son las más valiosas para el organismo.
Deficiencia de proteínas:
Deficiencia de proteínas en el tercer mundo La deficiencia de proteína es una causa importante de enfermedad y muerte en el tercer mundo. La deficiencia de proteína juega una parte en la enfermedad conocida como kwashiorkor. La guerra, la hambruna, la sobrepoblación y otros factores incrementaron la tasa de malnutrición y deficiencia de proteínas. La deficiencia de proteína puede conducir a una inteligencia reducida o retardo mental. La malnutrición proteico calórica afecta a 500 millones de personas y más de 10 millones anualmente. En casos severos el número de células blancas disminuye, de la misma manera se ve reducida drásticamente la habilidad de los leucocitos de combatir una infección.
Deficiencia de proteínas en países desarrollados La deficiencia de proteínas es rara en países desarrollados pero un pequeño número de personas tiene dificultad para obtener suficiente proteína debido a la pobreza. La deficiencia de proteína también puede ocurrir en países desarrollados en personas que están haciendo dieta para perder peso, o en adultos mayores quienes pueden tener una dieta pobre. Las personas convalecientes, recuperándose de cirugía, trauma o enfermedades pueden tener déficit proteico si no incrementan su consumo para soportar el incremento en sus necesidades. Una deficiencia también puede ocurrir si la proteína consumida por una persona está incompleta y falla en proveer todos los aminoácidos esenciales.
Exceso de consumo de proteínas:
Como el organismo es incapaz de almacenar las proteínas, el exceso de proteínas es digerido y convertido en azúcares o ácidos grasos. El hígado retira el nitrógeno de los aminoácidos, una manera de que éstos pueden ser consumidos como combustible, y el nitrógeno es incorporado en la urea, la sustancia que es excretada por los riñones. Estos órganos normalmente pueden lidiar con cualquier sobrecarga adicional pero si existe enfermedad renal, una disminución en la proteína frecuentemente será prescrita.
El exceso en el consumo de proteínas también puede causar la pérdida de calcio corporal, lo cual puede conducir a pérdida de masa ósea a largo plazo. Sin embargo, varios suplementos proteicos vienen suplementados con diferentes cantidades de calcio por ración, de manera que pueden contrarrestar el efecto de la pérdida de calcio.
Algunos sospechan que el consumo excesivo de proteínas está ligado a varios problemas:
Hiperreactividad del sistema inmune.
Disfunción hepática debido a incremento de residuos tóxicos.
Pérdida de densidad ósea, la fragilidad de los huesos es debido a que el calcio y la glutamina son filtrados de los huesos y el tejido muscular para balancear el incremento en la ingesta de ácidos a partir de la dieta. Este efecto no esta presente si el consumo de minerales alcalinos (a partir de frutas y vegetales, los cereales son ácidos como las proteínas, las grasas son neutras) es alto.
En tales casos, el consumo de proteínas es anabólico para el hueso. Muchos investigadores piensan que un consumo excesivo de proteínas produce un incremento forzado en la excreción del calcio. Si hay consumo excesivo de proteínas, se piensa que un consumo regular de calcio seré capaz de estabilizar, o inclusive incrementar la captación de calcio por el intestino delgado, lo cual sería más beneficioso a las mujeres mayores.
Las proteínas son frecuentemente causa de alergias y reacciones alérgicas a ciertos alimentos. Esto ocurre porque la estructura de cada forma de proteína es ligeramente diferente, algunas pueden desencadenar una respuesta a partir del sistema inmune mientras otros permanecen perfectamente seguros. Muchas personas son alérgicas a la caseína, la proteína en la leche; al gluten, la proteína en el trigo y otros granos; a la proteína particular encontrada en el maní; o aquellas encontradas en mariscos y otras comidas marinas. Es extremadamente inusual que una misma persona reaccione adversamente a más de dos tipos diferentes de proteínas, debido a la diversidad entre tipos de proteínas o aminoácidos. A parte de eso las proteinas ayudan a la formación de la masa moscular, para todas aquellas personas que le gusta hacer ejercicio, en lo cual se recomienda la pechuga de pollo salcochado debido al alto indice de proteina que esta trae y no se esta consumiendo la grasa.
Análisis de proteínas en alimentos:
El clásico ensayo para medir concentración de proteínas en alimentos es el método de Kjeldahl. Este ensayo determina el nitrógeno total en una muestra. El único componente de la mayoría de los alimentos el cual contiene nitrógeno son las proteínas (las grasas, los carbohidratos y la fibra dietética no contienen nitrógeno). Si la cantidad de nitrógeno es multiplicada por un factor dependiente del tipo de proteína esperada en el alimento, la cantidad total de proteínas puede ser determinada. En las etiquetas de los alimentos, la proteína es expresada como el nitrógeno multiplicado por 6,25, porque el contenido de nitrógeno promedio de las proteínas es de aproximadamente 16%. El método de Kjeldahl es usado porque es el método que la AOAC International ha adoptado y por lo tanto es usado por varias agencias alimentarias alrededor del mundo.
Digestión de proteínas:
La digestión de las proteínas se inicia típicamente en el estómago cuando el pepsinógeno es convertido a pepsina por la acción del ácido clorhídrico, y continúa por la acción de la tripsina y la quimotripsina en el intestino. Las proteínas de la dieta son degradadas a péptidos cada vez más pequeños y éstos hasta aminoácidos y sus derivados, que son absorbidos por el epitelio gastrointestinal. La tasa de absorción de los aminoácidos individuales es altamente dependiente de la fuente de proteínas; por ejemplo la digeribilidad de muchos aminoácidos en humanos difiere entre la proteína de la soja y la proteína de la leche y entre proteínas de la leche individuales, como beta-lactoglobulina y caseína. Para las proteínas de la leche, aproximadamente el 50% de la proteína ingerida se absorbe en el estómago o el yeyuno y el 90% se ha absorbido ya cuando los alimentos ingeridos alcanzan el íleon.
Además de su rol en la síntesis de proteínas, los aminoácidos también son una importante fuente nutricional de nitrógeno. Las proteínas, al igual que los carbohidratos, contienen 4 kilocalorías por gramo, mientras que los lípidos contienen 9 kcal y los alcoholes 7 kcal. Los aminoacidos pueden ser convertidos en glucosa a través de un proceso llamado gluconeogénesis
HORMONAS
HORMONAS
Las hormonas son sustancias segregadas por células especializadas, localizadas en glándulas de secreción interna o glándulas endócrinas (carentes de conductos), o también por células epiteliales e intersticiales con el fin de afectar la función de otras células. Hay hormonas animales y hormonas vegetales como las auxinas, ácido abscísico, citoquinina, giberelina y el etileno.
Son transportadas por vía sanguínea o por el espacio intersticial, solas (biodisponibles) o asociadas a ciertas proteínas (que extienden su vida media al protegerlas de la degradación) y hacen su efecto en determinados órganos o tejidos diana (o blanco) a distancia de donde se sintetizaron, sobre la misma célula que la sintetiza (acción autócrina) o sobre células contiguas (acción parácrina) interviniendo en la comunicación celular. Existen hormonas naturales y hormonas sintéticas. Unas y otras se emplean como medicamentos en ciertos trastornos, por lo general, aunque no únicamente, cuando es necesario compensar su falta o aumentar sus niveles si son menores de lo normal.
Las hormonas pertenecen al grupo de los mensajeros químicos, que incluye también a los neurotransmisores. A veces es difícil clasificar a un mensajero químico como hormona o neurotransmisor. Todos los organismos multicelulares producen hormonas, incluyendo las plantas (fitohormona). Las hormonas más estudiadas en animales (y humanos) son las producidas por las glándulas endocrinas, pero también son producidas por casi todos los órganos humanos y animales.
La especialidad médica que se encarga del estudio de las enfermedades relacionadas con las hormonas es la endocrinología.
HISTORIAEl concepto de secreción interna apareció en el siglo XIX, cuando Claude Bernard lo describió en 1855, pero no especificó la posibilidad de que existieran mensajeros que transmitieran señales desde un órgano a otro.
El término hormona fue acuñado en 1905, a partir del verbo griego ὁρμἀω (poner en movimiento, estimular), aunque ya antes se habían descubierto dos funciones hormonales. La primera fundamentalmente del hígado, descubierta por Claude Bernard en 1851. La segunda fue la función de la médula suprarrenal, descubierta por Vulpian en 1856. La primera hormona que se descubrió fue la adrenalina, descrita por el japonés Takamine en 1901. Posteriormente el estadounidense Kendall aisló la tiroxina en 1914 .
Fisiología:
Cada célula es capaz de producir una gran cantidad de moléculas reguladoras.las glándulas endócrinas y sus productos hormonales están especializados en la regulación general del organismo así como también en la autorregulación de un órgano o tejido. El método que utiliza el organismo para regular la concentración de hormonas es balance entre la retroalimentación positiva y negativa, fundamentado en la regulación de su producción, metabolismo y excreción.
Las hormonas pueden ser estimuladas o inhibidas por:
Otras hormonas.
Concentración plasmática de iones o nutrientes.
Neuronas y actividad mental.
Cambios ambientales, por ejemplo luz, temperatura, presión atmosférica.
Tipos de hormonas:
Según su naturaleza química, se reconocen dos grandes tipos de hormonas:
Hormonas peptídicas. Son derivados de aminoácidos (como las hormonas tiroideas), o bien oligopéptidos (como la vasopresina) o polipéptidos (como la hormona del crecimiento). En general, este tipo de hormonas no pueden atravesar la membrana plasmática de la célula diana, por lo cual los receptores para estas hormonas se hallan en la superficie celular. Las hormonas tiroideas son una excepción, ya que se unen a receptores específicos que se hallan en el núcleo.
Hormonas lipídicas. Son esteroides (como la testosterona) o eicosanoides (como las prostaglandinas). Dado su carácter lipófilo, atraviesan sin problemas la bicapa lipídica de las membranas celulares y sus receptores específicos se hallan en el interior de la célula diana.
Mecanismos de acción hormonal:
Las hormonas tienen la característica de actuar sobre las células diana, que deben disponer de una serie de receptores específicos. Hay dos tipos de receptores celulares:
Receptores de membrana: los usan las hormonas peptídicas. Las hormonas peptídicas (1er mensajero) se fija a un receptor proteico que hay en la membrana de la célula, y estimula la actividad de otra proteína (unidad catalítica), que hace pasar el ATP (intracelular) a AMP (2º mensajero), que junto con el calcio intracelular, activa la enzima proteína quinasa (responsable de producir la fosforilación de las proteínas de la célula, que produce una acción biológica determinada). Esta es la teoría o hipótesis de 2º mensajero o de Sutherland.
Receptores intracelulares: los usan las hormonas esteroideas. La hormona atraviesa la membrana de la célula diana por difusión. Una vez dentro del citoplasma, penetra incluso en el núcleo, donde se fija el DNA y hace que se sintetice ARNm, que induce a la síntesis de nuevas proteínas, que se traducirán en una respuesta fisiológica
Principales hormonas humanas:
Hormonas peptídicas
Son péptidos o derivados de aminoácidos; dado que la mayoría no atraviesan la membrana plasmática de las células diana, éstas disponen de receptores específicos para tales hormonas en su superficie.
Hormonas lipídicas
Su naturaleza lipófila les permite atravesar la bicapa lipídica de las membranas celulares; sus receptores específicos se localizan en el citosol o en el núcleo de las células diana.
Un grupo especial de hormonas son las hormonas tróficas que actúan estimulando la producción de nuevas hormonas por parte de las glándulas endócrinas. Por ejemplo, la TSH producida por la hipófisis estimula la liberación de hormonas tiroideas además de estimular el crecimiento de dicha glándula. Recientemente se han descubierto las hormonas del hambre: ghrelina, orexina y péptido Y y sus antagonistas como la leptina.
Feromonas:
Las feromonas son sustancias químicas secretadas por un individuo con el fin de provocar un comportamiento determinado en otro individuo de la misma u otra especie. Son por tanto un medio de señales cuyas principales ventajas son el gran alcance y la evitación de obstáculos, puesto que son arrastradas por el aire. Viene del griego y significa "llevo excitación". Algunas mariposas como la Saturnia pyri son capaces de detectar el olor de la hembra a 20,00 Km. de distancia.
VITAMINAS
Las vitaminas (del latín vita (vida) + el griego αμμονιακός, ammoniakós "producto libio, amoníaco", con el sufijo latino ina "sustancia") son compuestos heterogéneos imprescindibles para la vida, que al ingerirlas de forma equilibrada y en dosis esenciales puede ser trascendental para promover el correcto funcionamiento fisiológico. La gran mayoría de las vitaminas esenciales no pueden ser sintetizadas (elaboradas) por el organismo, por lo que éste no puede obtenerlos más que a través de la ingesta equilibrada de vitaminas contenidas en los alimentos naturales. Las vitaminas son nutrientes que junto a otros elementos nutricionales actúan como catalizadoras de todos los procesos fisiológicos (directa e indirectamente).
Las vitaminas son precursoras de coenzimas, (aunque no son propiamente enzimas) grupos prostéticos de las enzimas. Esto significa, que la molécula de la vitamina, con un pequeño cambio en su estructura, pasa a ser la molécula activa, sea ésta coenzima o no.
Los requerimientos mínimos diarios de las vitaminas no son muy altos, se necesitan tan solo dosis de miligramos o microgramos contenidas en grandes cantidades (proporcionalmente hablando) de alimentos naturales. Tanto la deficiencia como el exceso de los niveles vitamínicos corporales pueden producir enfermedades que van desde leves a graves e incluso muy graves como la pelagra o la demencia entre otras, e incluso la muerte. Algunas pueden servir como ayuda a las enzimas que actuan como cofactor, como es el caso de las vitaminas hidrosolubles
La deficiencia de vitaminas se denomina avitaminosis, no "hipovitaminosis", mientras que el nivel excesivo de vitaminas se denomina hipervitaminosis.
Está demostrado que las vitaminas del grupo "B" (complejo B) son imprescindibles para el correcto funcionamiento del cerebro y el metabolismo corporal. Este grupo es hidrosoluble (solubles en agua) debido a esto son eliminadas principalmente por la orina, lo cual hace que sea necesaria la ingesta diaria y constante de todas las vitaminas del complejo "B" (contenidas en los alimentos naturales).
CLASIFICASION:
Las vitaminas se pueden clasificar según su solubilidad: si lo son en agua hidrosolubles o si lo son en lípidos liposolubles. En los seres humanos hay 13 vitaminas, 9 hidrosolubles (8 del complejo B y la vitamina C) y 4 liposolubles (A, D, E y K).
*Hipervitaminosis y toxicidad de las vitaminas
Las vitaminas aunque son esenciales, pueden ser tóxicas en grandes cantidades. Unas son muy tóxicas y otras son inocuas incluso en cantidades muy altas.
La toxicidad puede variar según la forma de aplicar las dosis. Como ejemplo, la vitamina D se administra en cantidades suficientemente altas como para cubrir las necesidades para 6 meses; sin embargo, no se podría hacer lo mismo con vitamina B3 o B6, porque seria muy tóxica.
Otro ejemplo es el que la suplementación con vitaminas hidrosolubles a largo plazo, se tolera mejor debido a que los excedentes se eliminan más fácilmente por la orina.
Las vitaminas más tóxicas son la D, y la A, también lo puede ser la vitamina B3.
Otras vitaminas, sin embargo, son muy poco tóxicas o prácticamente inocuas.
La B12 no posee toxicidad incluso con dosis muy altas. A la tiamina le ocurre parecido, sin embargo con dosis muy altas y durante mucho tiempo puede provocar problemas de tiroides. En el caso de la vitamina E, sólo es tóxica con suplementos específicos de vitamina E y con dosis muy elevadas. También se conocen casos de intoxicaciones en esquimales al comer hígado de mamíferos marinos.
lunes, 1 de marzo de 2010
LIPIDOS
Los lípidos son un conjunto de moléculas orgánicas, la mayoría biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que tienen como característica principal el ser hidrofóbicas o insolubles en agua y sí en disolventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, ya que las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos de las bicapas) y la reguladora (esteroides).
CARARCTERISTICAS GENERALES
Los lípidos son biomoléculas muy diversas; unos están formados por cadenas alifáticas saturadas o insaturadas, en general lineales, pero algunos tienen anillos (aromáticos). Algunos son flexibles, mientras que otros son rígidos o semiflexibles hasta alcanzar casi una total flexibilidad molecular; algunos comparten carbonos libres y otros forman puentes de hidrógeno.
La mayoría de los lípidos tiene algún tipo de carácter polar, además de poseer una gran parte apolar o hidrofóbico ("que le teme al agua" o "rechaza al agua"), lo que significa que no interactúa bien con solventes polares como el agua. Otra parte de su estructura es polar o hidrofílica ("que ama el agua" o "que tiene afinidad por el agua") y tenderá a asociarse con solventes polares como el agua; cuando una molécula tiene una región hidrófoba y otra hidrófila se dice que tiene carácter anfipático. La región hidrófoba de los lípidos es la que presenta solo átomos de carbono unidos a átomos de hidrógeno, como la larga "cola" alifática de los ácidos grasos o los anillos de esterano del colesterol; la región hidrófila es la que posee grupos polares o con cargas eléctricas, como el hidroxilo (–OH) del colesterol, el carboxilo (–COO–) de los ácidos grasos, el fosfato (–PO4–) de los fosfolípidos, etc.
CLASIFICACION BIOLOGICA
Los lípidos son un grupo muy heterogéneo que usualmente se clasifican en dos grupos, atendiendo a que posean en su composición ácidos grasos (lípidos saponificables) o no lo posean (lípidos insaponificables).
Lípidos saponificables
Simples. Lípidos que sólo contienen carbono, hidrógeno y oxígeno.
Acilglicéridos. Cuando son sólidos se les llama grasas y cuando son líquidos a temperatura ambiente se llaman aceites.
Céridos (ceras)
Complejos. Son los lípidos que además de contener en su molécula carbono, hidrógeno y oxígeno, también contienen otros elementos como nitrógeno, fósforo, azufre u otra biomolécula como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares.
Fosfolípidos
Fosfoglicéridos
Fosfoesfingolípidos
Glucolípidos
Cerebrósidos
Gangliósidos
Lípidos insaponificables
Terpenoides
Esteroides
LIPIDOS SAPONIFICABLES
Ácidos grasos [editar]
Estructura 3D del ácido linoleico, un tipo de ácido graso. En rojo se observa la cabeza polar correspondiente a un grupo carboxilo.Artículo principal: Ácido graso
Son las unidades básicas de los lípidos saponificables, y consisten en moléculas formadas por una larga cadena hidrocarbonada con un número par de átomos de carbono (12-24) y un grupo carboxilo terminal. La presencia de dobles enlaces en el ácido graso reduce el punto de fusión. Los ácidos grasos se dividen en saturados e insaturados.
Saturados. Sin dobles enlaces entre átomos de carbono; por ejemplo, ácido láurico, ácido mirístico, ácido palmítico, acido margárico, ácido esteárico, ácido araquídico y ácido lignogérico.
Insaturados. Los ácidos grasos insaturados se caracterizan por poseer dobles enlaces es su configuración molecular. Éstas son fácilmente identificables, ya que estos dobles enlaces hacen que su punto de fusión sea menor que en el resto. Se presentan ante nosotros como líquidos, como aquellos que llamamos aceites. Este tipo de alimentos disminuyen el colesterol en sangre y también son llamados ácidos grasos esenciales. Los animales no somos capaces de sintetizarlos, pero los necesitamos para desarrollar ciertas funciones fisiológicas, por lo que debemos aportarlos en la dieta. La mejor forma y la más sencilla para poder enriquecer nuestra dieta con estos alimentos, es aumentar su ingestión, es decir, aumentar su proporción respecto los alimentos que consumimos de forma habitual.Con uno o más dobles enlaces entre átomos de carbono; por ejemplo, ácido palmitoleico, ácido oleico, ácido elaídico, ácido linoleico, ácido linolénico y ácido araquidónico y acido nervónico.
Los denominados ácidos grasos esenciales no pueden ser sintetizados por el organismo humano y son el ácido linoleico, el ácido linolénico y el ácido araquidónico, que deben ingerirse en la dieta.
ACILGLICERICOS
Los acilglicéridos o acilgliceroles son ésteres de ácidos grasos con glicerol (glicerina), formados mediante una reacción de condensación llamada esterificación. Una molécula de glicerol puede reaccionar con hasta tres moléculas de ácidos grasos, puesto que tiene tres grupos hidroxilo.
Según el número de ácidos grasos que se unan a la molécula de glicerina, existen tres tipos de acilgliceroles:
Monoglicéridos. Sólo existe un ácido graso unido a la molécula de glicerina.
Diacilglicéridos. La molécula de glicerina se une a dos ácidos grasos.
Triacilglicéridos. Llamados comúnmente triglicéridos, puesto que la glicerina está unida a tres ácidos grasos; son los más importantes y extendidos de los tres.
Los triglicéridos constituyen la principal reserva energética de los animales, en los que constituyen las grasas; en los vegetales constituyen los aceites. El exceso de lípidos es almacenado en grandes depósitos en el tejido adiposo de los animales.
CERIDOS
Las ceras son moléculas que se obtienen por esterificación de un ácido graso con un alcohol monovalente lineal de cadena larga. Por ejemplo la cera de abeja. Son sustancias altamente insolubles en medios acuosos y a temperatura ambiente se presentan sólidas y duras. En los animales las podemos encontrar en la superficie del cuerpo, piel, plumas, cutícula, etc. En los vegetales, las ceras recubren en la epidermis de frutos, tallos, junto con la cutícula o la suberina, que evitan la pérdida de agua por evaporación.
GLUCOLIPIDOS
Los glucolípidos son esfingolípidos formados por una ceramida (esfingosina + ácido graso) unida a un glúcido, careciendo, por tanto, de grupo fosfato. Al igual que los fosfoesfingolípidos poseen ceramida, pero a diferencia de ellos, no tienen fosfato ni alcohol. Se hallan en las bicapas lipídicas de todas las membranas celulares, y son especialmente abundantes en el tejido nervioso; el nombre de los dos tipos principales de glucolípidos alude a este hecho:
Cerebrósidos. Son glucolípidos en los que la ceramida se une un monosacárido (glucosa o galactosa) o a un oligosacárido.
Gangliósidos. Son glucolípidos en los que la ceramida se une a un oligosacárido complejo en el que siempre hay ácido siálico.
Los glucolípidos se localizan en la cara externa de la bicapa de las membranas celulares donde actúan de receptores.
martes, 16 de febrero de 2010
CARBOHIDRATOS
Los glúcidos, carbohidratos, hidratos de carbono o sacáridos (del griego σάκχαρον que significa "azúcar") son moléculas orgánicas compuestas por carbono, hidrógeno y oxígeno. Son solubles en agua y se clasifican de acuerdo a la cantidad de carbonos o por el grupo funcional que tienen adherido. Son la forma biológica primaria de almacenamiento y consumo de energía. Otras biomoléculas energéticas son las grasas y, en menor medida, las proteínas.
El término hidrato de carbono o carbohidrato es poco apropiado, ya que estas moléculas no son átomos de carbono hidratados, es decir, enlazados a moléculas de agua, sino que constan de átomos de carbono unidos a otros grupos funcionales químicos. Este nombre proviene de la nomenclatura química del siglo XIX, ya que las primeras sustancias aisladas respondían a la fórmula elemental Cn(H2O)n (donde "n" es un entero=1,2,3... según el número de átomos). De aquí el término "carbono-hidratado" se haya mantenido, si bien posteriormente se vio que otras moléculas con las mismas características químicas no se corresponden con esta fórmula. Además, los textos científicos anglosajones aún insisten en denominarlos carbohydrates lo que induce a pensar que este es su nombre correcto. Del mismo modo, en dietética, se usa con más frecuencia la denominación de carbohidratos.
Los glúcidos pueden sufrir reacciones de esterificación, aminación, reducción, oxidación, lo cual otorga a cada una de las estructuras una propiedad especifica, como puede ser de solubilidad.
SINONIMOS:
Carbohidratos o hidratos de carbono: ha habido intentos para sustituir el término de hidratos de carbono. Desde 1996 el Comité Conjunto de la Unión Internacional de Química Pura y Aplicada (International Union of Pure and Applied Chemistry y de la Unión Internacional de Bioquímica y Biología Molecular (International Union of Biochemistry and Molecular Biology) recomienda el término carbohidrato y desaconseja el de hidratos de carbono.
Glúcidos: este nombre proviene de que pueden considerarse derivados de la glucosa por polimerización y pérdida de agua. El vocablo procede del griego "glycýs", que significa dulce.
Azúcares: este término sólo puede usarse para los monosacáridos (aldosas y cetosas) y los oligosacáridos inferiores (disacáridos). En singular (azúcar) se utiliza para referirse a la sacarosa o azúcar de mesa.
Sacáridos: proveniente del griego σάκχαρον que significa "azúcar". Es la raíz principal de los tipos principales de glúcidos (monosacáridos, disacáridos, polisacáridos y oligosacáridos).
ESTRUCTURA QUIMICA:
Los glúcidos son compuestos formados en su mayor parte por átomos de carbono e hidrógeno y en una menor cantidad de oxígeno. Los glúcidos tienen enlaces químicos difíciles de romper llamados covalentes, mismos que poseen gran cantidad de energía, que es liberada al romperse estos enlaces. Una parte de esta energía es aprovechada por el organismo consumidor, y otra parte es almacenada en el organismo.
En la naturaleza se encuentran en los seres vivos, formando parte de biomoléculas aisladas o asociadas a otras como las proteínas y los lípidos.
TIPOS:
Monosacáridos:Los glúcidos más simples, los monosacáridos, están formados por una sola molécula; no pueden ser hidrolizados a glúcidos más pequeños. La fórmula química general de un monosacárido no modificado es (CH2O)n, donde n es cualquier número igual o mayor a tres, su limite es de 6 carbonos. Los monosacáridos poseen siempre un grupo carbonilo en uno de sus átomos de carbono y grupos hidroxilo en el resto, por lo que pueden considerarse polialcoholes.
Ciclación:El grupo aldehído o cetona en una cadena lineal abierta de un monosacárido reaccionará reversiblemente con el grupo hidroxilo sobre un átomo de carbono diferente en la misma molécula para formar un hemiacetal o hemicetal, formando un anillo heterocíclico, con un puente de oxígeno entre los dos átomos de carbono. Los anillos con cinco y seis átomos son llamados formas furanosa y piranosa respectivamente y existen en equilibrio con la cadena lineal abierta.
Disacáridos:Los disacáridos son glúcidos formados por dos moléculas de monosacáridos y, por tanto, al hidrolizarse producen dos monosacáridos libres. Los dos monosacáridos se unen mediante un enlace covalente conocido como enlace glucosídico, tras una reacción de deshidratación que implica la pérdida de un átomo de hidrógeno de un monosacárido y un grupo hidroxilo del otro monosacárido, con la consecuente formación de una molécula de H2O, de manera que la fórmula de los disacáridos no modificados es C12H22O11.
Oligosacáridos:Los oligosacáridos están compuestos por entre tres y nueve moléculas de monosacáridos que al hidrolizarse se liberan. No obstante, la definición de cuan largo debe ser un glúcido para ser considerado oligo o polisacárido varía según los autores. Según el número de monosacáridos de la cadena se tienen los trisacáridos (como la rafinosa ), tetrasacárido (estaquiosa), pentasacáridos, etc.
Polisacáridos:Los polisacáridos son cadenas, ramificadas o no, de más de diez monosacáridos. Los polisacáridos representan una clase importante de polímeros biológicos. Su función en los organismos vivos está relacionada usualmente con estructura o almacenamiento. El almidón es usado como una forma de almacenar monosacáridos en las plantas, siendo encontrado en la forma de amilosa y la amilopectina (ramificada). En animales, se usa el glucógeno en vez de almidón el cual es estructuralmente similar pero más densamente ramificado. Las propiedades del glucógeno le permiten ser metabolizado más rápidamente, lo cual se ajusta a la vida activa de los animales con locomoción.
FUNSION:
Los glúcidos desempeñan diversas funciones, siendo la de reserva energética y formación de las dos estructuras más importantes. Así, la glucosa aporta energía inmediata a los organismos, y es la responsable de mantener la actividad de los músculos, la temperatura corporal, la tensión arterial, el correcto funcionamiento del intestino y la actividad de las neuronas.
La ribosa y la desoxirribosa son constituyentes básicos de los nucleótidos, monómeros del ARN y del ADN .
CLASIFICACION:
Los nutricionistas y dietistas antiguamente clasificaban los carbohidratos como simples (monosacáridos y disacáridos) o complejos (oligosacáridos y polisacáridos). El término carbohidrato complejo fue usado por primera vez en la publicación Dietary Goals for the United States (1977) del Comité seleccionado del Senado, donde los denominaron "frutas, vegetales y granos enteros". Las guías dietéticas generalmente recomiendan que los carbohidratos complejos los nutrientes ricos en carbohidratos simples tales como frutas y productos lácteos deberían cubrir el grueso del consumo de carbohidratos. Las guías dietéticas para los americanos 2005 de la USDA prescindió de la distinción entre simple/complejo, en vez recomienda alimentos ricos en fibra y de granos completos.
El índice glicémico y el sistema de la carga de glicemia son populares métodos de clasificación alternativos los cuales clasifican los alimentos ricos en carbohidratos basados en su efecto sobre los niveles de glucosa sanguínea. El índice de insulina es un método de clasificación similar, más reciente el cual clasifica los alimentos basado en su efecto sobre los niveles de insulina. Este sistema asume que los alimentos con índice glicémico alto puede ser declarados para ser la ingesta de alimentos más aceptable.
El informe conjunto de expertos de la WHO y la FAO, en Dieta, Nutrición y Prevención de Enfermedades Crónicas (serie de informes técnicos de la WHO 916), recomienda que el consumo de carbohidratos suponga el 55-75% de la energía diaria, pero restringe el consumo de "azúcar libre" a un 10%.
APLICASIONES:
Los carbohidratos se utilizan para fabricar tejidos, películas fotográficas, plásticos y otros productos. La celulosa se puede convertir en rayón de viscosa y productos de papel. El nitrato de celulosa (nitrocelulosa) se utiliza en películas de cine, cemento, pólvora de algodón, celuloide y tipos similares de plásticos. El almidón y la pectina, un agente cuajante, se usan en la preparación de alimentos para el hombre y el ganado. La goma arábiga se usa en medicamentos demulcentes. El agar, un componente de algunos laxantes, se utiliza como agente espesante en los alimentos y como medio para el cultivo bacteriano; también en la preparación de materiales adhesivos, de encolado y emulsiones. La hemicelulosa se emplea para modificar el papel durante su fabricación. Los dextranos son polisacáridos utilizados en medicina como expansores de volumen del plasma sanguíneo para contrarrestar las conmociones agudas. Otro hidrato de carbono, el sulfato de heparina, es un anticoagulante de la sangre.
El término hidrato de carbono o carbohidrato es poco apropiado, ya que estas moléculas no son átomos de carbono hidratados, es decir, enlazados a moléculas de agua, sino que constan de átomos de carbono unidos a otros grupos funcionales químicos. Este nombre proviene de la nomenclatura química del siglo XIX, ya que las primeras sustancias aisladas respondían a la fórmula elemental Cn(H2O)n (donde "n" es un entero=1,2,3... según el número de átomos). De aquí el término "carbono-hidratado" se haya mantenido, si bien posteriormente se vio que otras moléculas con las mismas características químicas no se corresponden con esta fórmula. Además, los textos científicos anglosajones aún insisten en denominarlos carbohydrates lo que induce a pensar que este es su nombre correcto. Del mismo modo, en dietética, se usa con más frecuencia la denominación de carbohidratos.
Los glúcidos pueden sufrir reacciones de esterificación, aminación, reducción, oxidación, lo cual otorga a cada una de las estructuras una propiedad especifica, como puede ser de solubilidad.
SINONIMOS:
Carbohidratos o hidratos de carbono: ha habido intentos para sustituir el término de hidratos de carbono. Desde 1996 el Comité Conjunto de la Unión Internacional de Química Pura y Aplicada (International Union of Pure and Applied Chemistry y de la Unión Internacional de Bioquímica y Biología Molecular (International Union of Biochemistry and Molecular Biology) recomienda el término carbohidrato y desaconseja el de hidratos de carbono.
Glúcidos: este nombre proviene de que pueden considerarse derivados de la glucosa por polimerización y pérdida de agua. El vocablo procede del griego "glycýs", que significa dulce.
Azúcares: este término sólo puede usarse para los monosacáridos (aldosas y cetosas) y los oligosacáridos inferiores (disacáridos). En singular (azúcar) se utiliza para referirse a la sacarosa o azúcar de mesa.
Sacáridos: proveniente del griego σάκχαρον que significa "azúcar". Es la raíz principal de los tipos principales de glúcidos (monosacáridos, disacáridos, polisacáridos y oligosacáridos).
ESTRUCTURA QUIMICA:
Los glúcidos son compuestos formados en su mayor parte por átomos de carbono e hidrógeno y en una menor cantidad de oxígeno. Los glúcidos tienen enlaces químicos difíciles de romper llamados covalentes, mismos que poseen gran cantidad de energía, que es liberada al romperse estos enlaces. Una parte de esta energía es aprovechada por el organismo consumidor, y otra parte es almacenada en el organismo.
En la naturaleza se encuentran en los seres vivos, formando parte de biomoléculas aisladas o asociadas a otras como las proteínas y los lípidos.
TIPOS:
Monosacáridos:Los glúcidos más simples, los monosacáridos, están formados por una sola molécula; no pueden ser hidrolizados a glúcidos más pequeños. La fórmula química general de un monosacárido no modificado es (CH2O)n, donde n es cualquier número igual o mayor a tres, su limite es de 6 carbonos. Los monosacáridos poseen siempre un grupo carbonilo en uno de sus átomos de carbono y grupos hidroxilo en el resto, por lo que pueden considerarse polialcoholes.
Ciclación:El grupo aldehído o cetona en una cadena lineal abierta de un monosacárido reaccionará reversiblemente con el grupo hidroxilo sobre un átomo de carbono diferente en la misma molécula para formar un hemiacetal o hemicetal, formando un anillo heterocíclico, con un puente de oxígeno entre los dos átomos de carbono. Los anillos con cinco y seis átomos son llamados formas furanosa y piranosa respectivamente y existen en equilibrio con la cadena lineal abierta.
Disacáridos:Los disacáridos son glúcidos formados por dos moléculas de monosacáridos y, por tanto, al hidrolizarse producen dos monosacáridos libres. Los dos monosacáridos se unen mediante un enlace covalente conocido como enlace glucosídico, tras una reacción de deshidratación que implica la pérdida de un átomo de hidrógeno de un monosacárido y un grupo hidroxilo del otro monosacárido, con la consecuente formación de una molécula de H2O, de manera que la fórmula de los disacáridos no modificados es C12H22O11.
Oligosacáridos:Los oligosacáridos están compuestos por entre tres y nueve moléculas de monosacáridos que al hidrolizarse se liberan. No obstante, la definición de cuan largo debe ser un glúcido para ser considerado oligo o polisacárido varía según los autores. Según el número de monosacáridos de la cadena se tienen los trisacáridos (como la rafinosa ), tetrasacárido (estaquiosa), pentasacáridos, etc.
Polisacáridos:Los polisacáridos son cadenas, ramificadas o no, de más de diez monosacáridos. Los polisacáridos representan una clase importante de polímeros biológicos. Su función en los organismos vivos está relacionada usualmente con estructura o almacenamiento. El almidón es usado como una forma de almacenar monosacáridos en las plantas, siendo encontrado en la forma de amilosa y la amilopectina (ramificada). En animales, se usa el glucógeno en vez de almidón el cual es estructuralmente similar pero más densamente ramificado. Las propiedades del glucógeno le permiten ser metabolizado más rápidamente, lo cual se ajusta a la vida activa de los animales con locomoción.
FUNSION:
Los glúcidos desempeñan diversas funciones, siendo la de reserva energética y formación de las dos estructuras más importantes. Así, la glucosa aporta energía inmediata a los organismos, y es la responsable de mantener la actividad de los músculos, la temperatura corporal, la tensión arterial, el correcto funcionamiento del intestino y la actividad de las neuronas.
La ribosa y la desoxirribosa son constituyentes básicos de los nucleótidos, monómeros del ARN y del ADN .
CLASIFICACION:
Los nutricionistas y dietistas antiguamente clasificaban los carbohidratos como simples (monosacáridos y disacáridos) o complejos (oligosacáridos y polisacáridos). El término carbohidrato complejo fue usado por primera vez en la publicación Dietary Goals for the United States (1977) del Comité seleccionado del Senado, donde los denominaron "frutas, vegetales y granos enteros". Las guías dietéticas generalmente recomiendan que los carbohidratos complejos los nutrientes ricos en carbohidratos simples tales como frutas y productos lácteos deberían cubrir el grueso del consumo de carbohidratos. Las guías dietéticas para los americanos 2005 de la USDA prescindió de la distinción entre simple/complejo, en vez recomienda alimentos ricos en fibra y de granos completos.
El índice glicémico y el sistema de la carga de glicemia son populares métodos de clasificación alternativos los cuales clasifican los alimentos ricos en carbohidratos basados en su efecto sobre los niveles de glucosa sanguínea. El índice de insulina es un método de clasificación similar, más reciente el cual clasifica los alimentos basado en su efecto sobre los niveles de insulina. Este sistema asume que los alimentos con índice glicémico alto puede ser declarados para ser la ingesta de alimentos más aceptable.
El informe conjunto de expertos de la WHO y la FAO, en Dieta, Nutrición y Prevención de Enfermedades Crónicas (serie de informes técnicos de la WHO 916), recomienda que el consumo de carbohidratos suponga el 55-75% de la energía diaria, pero restringe el consumo de "azúcar libre" a un 10%.
APLICASIONES:
Los carbohidratos se utilizan para fabricar tejidos, películas fotográficas, plásticos y otros productos. La celulosa se puede convertir en rayón de viscosa y productos de papel. El nitrato de celulosa (nitrocelulosa) se utiliza en películas de cine, cemento, pólvora de algodón, celuloide y tipos similares de plásticos. El almidón y la pectina, un agente cuajante, se usan en la preparación de alimentos para el hombre y el ganado. La goma arábiga se usa en medicamentos demulcentes. El agar, un componente de algunos laxantes, se utiliza como agente espesante en los alimentos y como medio para el cultivo bacteriano; también en la preparación de materiales adhesivos, de encolado y emulsiones. La hemicelulosa se emplea para modificar el papel durante su fabricación. Los dextranos son polisacáridos utilizados en medicina como expansores de volumen del plasma sanguíneo para contrarrestar las conmociones agudas. Otro hidrato de carbono, el sulfato de heparina, es un anticoagulante de la sangre.
AGUA
El agua (del latín aqua) es una sustancia cuya molécula está formada por dos átomos de hidrógeno y uno de oxígeno (H2O). Es esencial para la supervivencia de todas las formas conocidas de vida. En su uso más común, con agua nos referimos a la sustancia en su estado líquido, pero la misma puede hallarse en forma sólida (hielo), y en forma gaseosa que llamamos vapor. El agua cubre el 71% de la superficie terrestre. En nuestro planeta, se localiza principalmente en los océanos donde se concentra el 96,5% del agua total, los glaciares y casquetes polares tiene el 1,74%, los depósitos subterráneos en (acuíferos), los permafrost y los glaciares continentales suponen el 1,72% y el restante 0,04% se reparte en orden decreciente entre lagos, la humedad del suelo, atmósfera, embalses, ríos y seres vivos.
Desde el punto de vista físico, el agua circula constantemente en un ciclo de evaporación o transpiración (evapotranspiración), precipitación, y desplazamiento hacia el mar. Los vientos transportan tanto vapor de agua como el que se vierte en los mares mediante su curso sobre la tierra, en una cantidad aproximada de 45.000 km³ al año. En tierra firme, la evaporación y transpiración contribuyen con 74.000 km³ anuales a causar precipitaciones de 119.000 km³ al año.
Se estima que aproximadamente el 70% del agua dulce se consume en la agricultura. El agua en la industria absorbe una media del 20% del consumo mundial, empleándose como medio en la refrigeración, el transporte y como disolvente de una granEl agua potable es esencial para todas las formas de vida, incluida la humana. El acceso al agua potable se ha incrementado sustancialmente durante las últimas décadas en la práctica totalidad de la superficie terrestre. Sin embargo estudios de la FAO, estiman que uno de cada cinco países en vías de desarrollo tendrá problemas de escasez de agua antes del 2030; en esos países es urgente un menor gasto de agua en la agricultura modernizando los sistemas de riego. variedad de sustancias químicas. El consumo doméstico absorbe del orden del 10% restante.
TIPOS DE AGUA:
El agua se puede presentar en tres estados siendo de las pocas sustancias que pueden encontrarse en sus tres estados de forma natural. El agua adopta formas muy distintas sobre la tierra: como vapor de agua, conformando nubes en el aire; como agua marina, eventualmente en forma de icebergs en los océanos; en glaciares y ríos en las montañas, y en los acuíferos subterráneos su forma líquida.
El agua puede disolver muchas sustancias, dándoles diferentes sabores y olores. Como consecuencia de su papel imprescindible para la vida, el ser humano -entre otros muchos animales- ha desarrollado sentidos capaces de evaluar la potabilidad del agua, que evitan el consumo de agua salada o putrefacta. Los humanos también suelen preferir el consumo de agua fría a la que está tibia, puesto que el agua fría es menos propensa a contener microbios. El sabor perceptible en el agua de deshielo y el agua mineral se deriva de los minerales disueltos en ella; de hecho el agua pura es insípida. Para regular el consumo humano, se calcula la pureza del agua en función de la presencia de toxinas, agentes contaminantes y microorganismos. El agua recibe diversos nombres, según su forma y características:[10]
Estas gotas se forman por la elevada tensión superficial del agua.
Copo de nieve visto a través de un microscopio. Está coloreado artificialmente.Según su estado físico:
Hielo (estado sólido)
Agua (estado líquido)
Vapor (estado gaseoso)
Según su posición en el ciclo del agua:
Hidrometeoro
Precipitación
Precipitación según desplazamiento Precipitación según estado
precipitación vertical
lluvia
lluvia congelada
llovizna
lluvia helada
nieve
granizo blando
gránulos de nieve
perdigones de hielo
aguanieve
pedrisco
cristal de hielo
precipitación horizontal (asentada)
rocío
escarcha
congelación atmosférica
hielo glaseado
precipitación líquida
lluvia
lluvia helada
llovizna
llovizna helada
rocío
precipitación sólida
nevasca
granizo blando
gránulos de nieve
perdigones de hielo
lluvia helada
granizo
prismas de hielo
escarcha
congelación atmosférica
hielo glaseado
aguanieve
precipitación mixta
con temperaturas cercanas a los 0 °C
partículas en suspensión
nubes
niebla
bruma
partículas en ascenso (impulsadas por el viento)
ventisca
nieve revuelta
según su circunstancia
agua subterránea
agua de deshielo
agua meteórica
agua inherente – la que forma parte de una roca
agua fósil
agua dulce
agua superficial
agua mineral – rica en minerales
Agua salobre ligeramente salada
agua muerta – extraño fenómeno que ocurre cuando una masa de agua dulce o ligeramente salada circula sobre una masa de agua más salada, mezclándose ligeramente. Son peligrosas para la navegación.
agua de mar
salmuera - de elevado contenido en sales, especialmente cloruro de sodio.
según sus usos
agua entubada
agua embotellada
agua potable – la apropiada para el consumo humano, contiene un valor equilibrado de minerales que no son dañinos para la salud.
agua purificada – corregida en laboratorio o enriquecida con algún agente – Son aguas que han sido tratadas para usos específicos en la ciencia o la ingeniería. Lo habitual son tres tipos:
agua destilada
agua de doble destilación
agua desionizada
atendiendo a otras propiedades
agua blanda – pobre en minerales
agua dura – de origen subterráneo, contiene un elevado valor mineral
agua de cristalización — es la que se encuentra dentro de las redes cristalinas.
hidratos — agua impregnada en otras sustancias químicas
agua pesada – es un agua elaborada con átomos pesados de hidrógeno-deuterio. En estado natural, forma parte del agua normal en una concentración muy reducida. Se ha utilizado para la construcción de dispositivos nucleares, como reactores.
agua de tritio
agua negra
aguas grises
agua disfórica
según la microbiología
agua potable
agua residual
agua lluvia o agua de superficie
El agua es también protagonista de numerosos ritos religiosos. Se sabe de infinidad de ceremonias ligadas al agua. El cristianismo, por ejemplo, ha atribuido tradicionalmente ciertas características al agua bendita. Existen también otros tipos de agua que después de cierto proceso adquieren supuestas propiedades, como el agua vitalizada.
Desde el punto de vista físico, el agua circula constantemente en un ciclo de evaporación o transpiración (evapotranspiración), precipitación, y desplazamiento hacia el mar. Los vientos transportan tanto vapor de agua como el que se vierte en los mares mediante su curso sobre la tierra, en una cantidad aproximada de 45.000 km³ al año. En tierra firme, la evaporación y transpiración contribuyen con 74.000 km³ anuales a causar precipitaciones de 119.000 km³ al año.
Se estima que aproximadamente el 70% del agua dulce se consume en la agricultura. El agua en la industria absorbe una media del 20% del consumo mundial, empleándose como medio en la refrigeración, el transporte y como disolvente de una granEl agua potable es esencial para todas las formas de vida, incluida la humana. El acceso al agua potable se ha incrementado sustancialmente durante las últimas décadas en la práctica totalidad de la superficie terrestre. Sin embargo estudios de la FAO, estiman que uno de cada cinco países en vías de desarrollo tendrá problemas de escasez de agua antes del 2030; en esos países es urgente un menor gasto de agua en la agricultura modernizando los sistemas de riego. variedad de sustancias químicas. El consumo doméstico absorbe del orden del 10% restante.
TIPOS DE AGUA:
El agua se puede presentar en tres estados siendo de las pocas sustancias que pueden encontrarse en sus tres estados de forma natural. El agua adopta formas muy distintas sobre la tierra: como vapor de agua, conformando nubes en el aire; como agua marina, eventualmente en forma de icebergs en los océanos; en glaciares y ríos en las montañas, y en los acuíferos subterráneos su forma líquida.
El agua puede disolver muchas sustancias, dándoles diferentes sabores y olores. Como consecuencia de su papel imprescindible para la vida, el ser humano -entre otros muchos animales- ha desarrollado sentidos capaces de evaluar la potabilidad del agua, que evitan el consumo de agua salada o putrefacta. Los humanos también suelen preferir el consumo de agua fría a la que está tibia, puesto que el agua fría es menos propensa a contener microbios. El sabor perceptible en el agua de deshielo y el agua mineral se deriva de los minerales disueltos en ella; de hecho el agua pura es insípida. Para regular el consumo humano, se calcula la pureza del agua en función de la presencia de toxinas, agentes contaminantes y microorganismos. El agua recibe diversos nombres, según su forma y características:[10]
Estas gotas se forman por la elevada tensión superficial del agua.
Copo de nieve visto a través de un microscopio. Está coloreado artificialmente.Según su estado físico:
Hielo (estado sólido)
Agua (estado líquido)
Vapor (estado gaseoso)
Según su posición en el ciclo del agua:
Hidrometeoro
Precipitación
Precipitación según desplazamiento Precipitación según estado
precipitación vertical
lluvia
lluvia congelada
llovizna
lluvia helada
nieve
granizo blando
gránulos de nieve
perdigones de hielo
aguanieve
pedrisco
cristal de hielo
precipitación horizontal (asentada)
rocío
escarcha
congelación atmosférica
hielo glaseado
precipitación líquida
lluvia
lluvia helada
llovizna
llovizna helada
rocío
precipitación sólida
nevasca
granizo blando
gránulos de nieve
perdigones de hielo
lluvia helada
granizo
prismas de hielo
escarcha
congelación atmosférica
hielo glaseado
aguanieve
precipitación mixta
con temperaturas cercanas a los 0 °C
partículas en suspensión
nubes
niebla
bruma
partículas en ascenso (impulsadas por el viento)
ventisca
nieve revuelta
según su circunstancia
agua subterránea
agua de deshielo
agua meteórica
agua inherente – la que forma parte de una roca
agua fósil
agua dulce
agua superficial
agua mineral – rica en minerales
Agua salobre ligeramente salada
agua muerta – extraño fenómeno que ocurre cuando una masa de agua dulce o ligeramente salada circula sobre una masa de agua más salada, mezclándose ligeramente. Son peligrosas para la navegación.
agua de mar
salmuera - de elevado contenido en sales, especialmente cloruro de sodio.
según sus usos
agua entubada
agua embotellada
agua potable – la apropiada para el consumo humano, contiene un valor equilibrado de minerales que no son dañinos para la salud.
agua purificada – corregida en laboratorio o enriquecida con algún agente – Son aguas que han sido tratadas para usos específicos en la ciencia o la ingeniería. Lo habitual son tres tipos:
agua destilada
agua de doble destilación
agua desionizada
atendiendo a otras propiedades
agua blanda – pobre en minerales
agua dura – de origen subterráneo, contiene un elevado valor mineral
agua de cristalización — es la que se encuentra dentro de las redes cristalinas.
hidratos — agua impregnada en otras sustancias químicas
agua pesada – es un agua elaborada con átomos pesados de hidrógeno-deuterio. En estado natural, forma parte del agua normal en una concentración muy reducida. Se ha utilizado para la construcción de dispositivos nucleares, como reactores.
agua de tritio
agua negra
aguas grises
agua disfórica
según la microbiología
agua potable
agua residual
agua lluvia o agua de superficie
El agua es también protagonista de numerosos ritos religiosos. Se sabe de infinidad de ceremonias ligadas al agua. El cristianismo, por ejemplo, ha atribuido tradicionalmente ciertas características al agua bendita. Existen también otros tipos de agua que después de cierto proceso adquieren supuestas propiedades, como el agua vitalizada.
¿QUE ESTUDIA LA BIOQUIMICA?
Es la ciencia que estudia los componentes quimicos de los seres vivos, especialmente las proteinas,carboidratos, lipidos y acidos nucleicos, ademas de otras pequeñas moleculas presentes en las celulas. la bioquimica se basa en el concepto de que todos los seres vivos contienen carbono, hidrogeno, oxigeno, nitrogeno, fosforo y azufre. es la ciencia que estudia la base de la vida: las moleculas que componen las celulas y los tejidos, que catalizan las reacciones quimicas de la digestion, la fotosintesis y la inmunidad entre otras. el comienzo de la biquimica puede muy bien haber sido el descubrimiento de la primera enzima, la diestasa, en 1893 por anselme payen.
BIOQUIMICA CELULAR: Es una area de la biologia que se dedica al estudio de la celula, su comportamiento, la comunicacion entre celulas.
GENETICA: Es un area de la biologia donde se estudia principalmente el ADN y ARN para entender la funsion de cada una de sus partes y los procesos asociados o su conversacion.
INMUNOLOGIA: Area de la biologia la cual se interesa por la reaccion del oraganismo frente a organismos como las bacterias y virus. Todo esto tomando en cuenta la reaccion y funsionamiento del sisntema inmune de los seres vivos.
FARMACOLOGICA: Area de la quimica que estudia como afectan siertas sustancias al funcionamiento celular en el organismo.
BIOQUIMICA CELULAR: Es una area de la biologia que se dedica al estudio de la celula, su comportamiento, la comunicacion entre celulas.
GENETICA: Es un area de la biologia donde se estudia principalmente el ADN y ARN para entender la funsion de cada una de sus partes y los procesos asociados o su conversacion.
INMUNOLOGIA: Area de la biologia la cual se interesa por la reaccion del oraganismo frente a organismos como las bacterias y virus. Todo esto tomando en cuenta la reaccion y funsionamiento del sisntema inmune de los seres vivos.
FARMACOLOGICA: Area de la quimica que estudia como afectan siertas sustancias al funcionamiento celular en el organismo.
Suscribirse a:
Entradas (Atom)